

P.O. Box 2758 Windsor, Nova Scotia, B0N 2T0 Phone: 902-798-2261 www.nu-airventilation.com Email: nuair@nu-airventilation.com

SE SERIES

OPERATING, MAINTAINING & INSTALLING YOUR ENERGY/HEAT RECOVERY VENTILATOR (H/ERV)

FOR MODELS: SE182E

Specifications, dimensions and ratings may change without notice as a result of ongoing product development and improvements.

IMPORTANT PLEASE READ THIS MANUAL BEFORE YOU INSTALL OR SERVICE UNIT

NOTE

Prior to integrating this unit with any other piece of mechanical equipment, i.e. furnace, air handler, combustion heating appliance, careful consideration must be given to system design and integration to ensure compatibility and proper operation of both appliances. **Do not** connect the duct system of your H/ERV to any clothes dryer or kitchen exhaust fan duct system.

Whether installing this unit as part of an independent system or to integrate it with a central heating/cooling system, use the procedure in this manual to ensure that the air flows of the H/ERV are balanced. A properly balanced H/ERV will deliver maximum performance and energy efficiency.

Although this documents some guidelines for proper installation of the product, installation work and electrical wiring must be done by a qualified person in accordance with all applicable codes and standards, including fire-rated codes and standards.

AVOID RISK OF INJURY, ELECTRIC SHOCK AND FIRE HAZARD

DO NOT install this product in an unconditioned space—15° C/59° F ambient temperature is recommended (otherwise product performance and or efficiency will be compromised)—or in a space/manner where maintenance and service might pose risk of personal injury or damage to this product.

For indoor installations only.

Your H/ERV is equipped with a 3-prong plug which will fit an A/C electrical outlet in just one orientation. Do not alter this plug or its cord in any way. Grip the plug firmly when removing it from an electrical outlet—**NEVER** unplug this product by pulling or twisting its power cord.

ALWAYS unplug an H/ERV before you open or remove its cover (door) to clean the inside of the unit or for any other servicing or repairs.

The cover to this H/ERV is removable to ensure ease of access to internal components during cleaning and servicing. USE CAUTION when opening or removing the cover of this H/ERV to avoid risk of personal injury or damage to the cover.

NEVER attempt to clean the interior of this H/ERV or its components while the unit is plugged in or running.

ONLY qualified persons should attempt repair or service of any electrical/internal component of this product.

NEVER attempt to repair or service any internal component of this H/ERV while the unit is plugged in or running.

DO NOT use your ventilation system to exhaust flammable fumes or gasses.

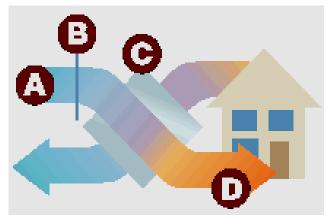

ALWAYS contact your Nu-Air representative if you have any questions or comments about the operation or maintenance of your Nu-Air H/ERV—we are here to help you!

TABLE OF CONTENTS

1.	S	SYSTEM FUCTION/OPERATING TIPS	
2.	I	INSTALLATION	
	2.1.	Installation Supplies, Standard Issue Items	4
	2.2.	Installer's Responsibilities	4
	2.3.	Installation System Options	5
	2.4.	Ducting to The Outside	6
	2.5.	Mounting, Noise Control, Orienting the Unit (SE182 Door/Safety Switch)	7
	2.6.	Ductwork	9
	2.7.	Furnace/Air Handler Interlock	9
	2.8.	Balancing Air Flows	10
3.	C	CONTROL OPTIONS & CONTROL WIRING	
	3.1.	12 VDC Control	
	3.2.	Nu-Air 24 VAC Controls and Other 24 VAC Control Options	13
	3.3.	NAV-460 20-40-60 Minute Timer & Wiring	13
	3.4.	Nu-Air DSTAT-1, Win-1 & Win-20 Timer	13
	3.5.	Status LEDs & Mode of Operation	16
4.	S	START-UP	
5.	N	MAINTENANCE	
6.	A	ANNUAL SERVICING:	
7.	I	TROUBLE SHOOTING	
8.		ELECTRICAL SCHEMATICS	
9.	V	WARRANTIES	
10	. Λ	NOTES/SERVICE RECORD	

1. SYSTEM FUCTION/OPERATING TIPS

- A. Powerful, centrifugal blowers bring fresh air into your home while an equal amount of stale, humid air is exhausted to the outside. This is **NU-AIR**'s balanced central ventilation system.
- B. Incoming fresh air is filtered before flowing through the heat exchange core.
- C. Stale, humid air flows through the cross-flow heat exchanger and transfers energy to the incoming fresh air. The air streams do not mix.
- D. Tempered fresh air is distributed to the house through an independent or shared (furnace) duct system.

Why Ventilate?

Modern homes are particularly well-sealed and well-insulated from the outside, i.e. they are very "tight". As such, tights homes tend to trap odours and other indoor pollutants like excessive moisture, volatile organic compounds (VOCs) from paints, cleaners, furniture and building materials. An HRV or ERV acts like the lungs of the home, delivering fresh, filtered outdoor air while remove stale, polluted air.

Operating Your System

Depending on the model and presence of/type of controls used in your installation, your ventilator is capable of the following modes of operation:

Standby. The unit is idle and responds to high-speed demands from a timer, dehumidistst, CO2 sensor, etc.

Full-Time Low Speed. The unit operates in low speed all the time and will go to high speed with a command from other controls in the system, such as a timer, dehumidistst, CO2 sensor, etc.

Full-Time High Speed. The unit runs in high speed on command from a central control or timer. **Timed High Speed.** Timers operate the unit in high speed for 20 or 20-40-60 minute intervals.

20 Lo/40 Standby. The unit runs in a cycle of 20 minutes in low speed, followed by 40 minutes of standby.

20 Lo/40 Recirculation. The unit runs in a cycle of 20 minutes in low speed, followed by 40 minutes of recirculating air within the home.

Full-Time Recirculation. The unit continuously recirculates air within the home. While not ventilating, this mode can help prevent air in the home from feeling stagnant and offers some level of air filtration.

The controls for your ventilation system might vary in features, but offer means to regulate how much and how often the home is ventilated. In a basic sense, it is recommended that the unit run on low speed at all times to ensure a steady supply of fresh air and removal of indoor pollutants. **However, how much a home needs ventilation can depend on several factors such as local Codes and Best Practices, the number of inhabitants, cooking habits, hobbies, presence of pets, opening windows, etc.**.

Some controls are equipped with a dehimidstat, or "d-stat". A d-stat monitors ambient relative humidity (RH) and has selectable settings, generally 30%-80% RH. When ambient humidity is detected above the setpoint, it will trigger high speed in the ventilator. The unit will run in high speed until the ambient air returns to the setpoint RH. Your ventilator is not a dehumidifier, however ventilating can have a dehumidifying effect by simply removing high RH air from the space, particularly during cooler/cold

seasons when outdoor humidity is typically lower than indoor humidity. Typical dehumidistat settings are as follows:

Winter Operation – 40% - 60%. Lower settings may be necessary in colder zones to keep windows free of condensation. If you notice the air is uncomfortably dry in winter, you might set humidity to a higher level or choose an operation mode above which operates the ventilator less or for shorter periods. **Spring/Fall Operation** - 50% - 60%.

Summer Operation – For air conditioned homes run the H/ERV as recommended for winter operation, i.e. continuous low speed or use a 20/40 setting. In homes without air conditioning, there is no need to run the H/ERV during the day when windows are open. If the H/ERV is connected to the bathrooms(s) or kitchen, use the standby setting. The typical dehumidistat summer setting is 65%-80% or OFF.

Note: For dial-type dehumidistats, moving the dial to **ON** locks unit in high speed; moving the dial to **OFF** prevents ambient humidity from triggering high speed (i.e. turns "off" humidity sensing).

2. INSTALLATION

2.1. Installation Supplies, Standard Issue Items

The H/ERV comes equipped with:

- Filters
- Anti-Vibration Straps
- Heat or Energy Recovery Core
- Drain Hose Assembly (HRV models)
- Balancing dampers are NOT REQUIRED. SE Series H/ERVs are equipped with a system which allows the installer to adjust each motor in <u>both</u> high and low speed.
- Removable terminal blocks for timers, remote controls, furnace interlock. A 4-wire terminal

block for Nu-Air 12 VDC controls and a 10-wire terminal block for 24 V controls are provided with the unit.

2.2. Installer's Responsibilities

Installers are responsible for the performance of the ventilation system and for ensuring that all codes and standards are met.

- Do not mount the fresh air intake near a source of contaminated air such as automotive exhaust, gas
 or propane exhaust, garbage containers or oil tanks.
- Do not connect a dryer exhaust to an H/ERV.
- Combustion appliances such as furnaces and hot water heaters must not draw combustion air directly from an H/ERV.
- Do not connect a kitchen range hood to any part of this system.
- Do not install in attics or other unconditioned spaces (min. 16° C, 61° F).
- Do not install in enclosed garages.
- Try to maintain straight duct runs as much as possible, using as few joint fittings as possible.
- Keep use of flexible ducting to a minimum.
- Be sure to observe local codes regarding running and insulating ducts in unconditioned spaces. Poorly insulated ducts run in unconditioned spaces will hamper the efficiency of the H/ERV.

2.3. Installation System Options

Before installing your H/ERV, please read these instructions for correct installation. The **Nu-Air** H/ERV is a self-contained system that is ready to be installed.

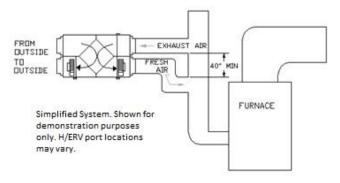
There are three commonly used and approved methods of installation.

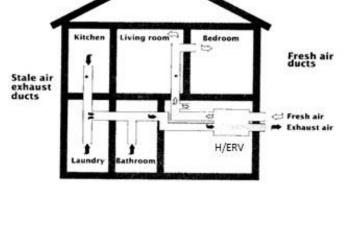
2.3.1. The Fully Ducted System

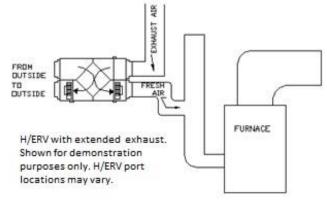
This system uses an independent duct system for supply and exhaust air. The H/ERV is controlled independently of all other equipment. The best results are achieved when:

- Each room of the space is serviced with a vent mounted in the ceiling or high on an interior wall (within 12" of the ceiling).
- Vents are located deep within a room, where they will not short circuit or create an uncomfortable draft. Vents are located deep within a room, where they will not short circuit or create an uncomfortable draft. Exhaust vents (typically) serve laundry rooms, kitchens, bathrooms, other wet rooms.

2.3.2. The Extended Exhaust System


This system uses the H/ERV in conjunction with a forced air distribution system. In this system the H/ERV supply air to the house is introduced into the return duct of the forced air furnace or air handler. Separate, additional ductwork is used to remove stale air from (typically) laundry rooms, kitchens, bathrooms, other wet rooms.


For effective supply air distribution, the furnace should be interlocked to the H/ERV: the furnace/air


handler fan should run in low speed (not heat or cool mode) whenever the H/ERV is operating.

2.3.3. The Simplified System

This system uses the furnace's return plenum for both supply air distribution and exhaust air collection. The exhaust air connection must be a minimum of 40 inches upstream of the supply air connection to avoid short-circuiting of the fresh air.

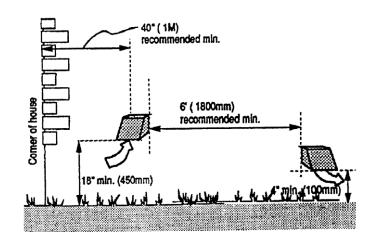
INSTALLATION NOTES:

1) When selecting an installation option, consideration should be given to the increased electrical consumption of the furnace fan. The way that your Heat/Energy-recovery ventilator is installed may make a significant difference to the electrical energy that you will use. To minimize the electricity use of the Heat/Energy-recovery ventilator, a stand-alone fully ducted installation is recommended. If you choose a simplified installation that operates your furnace air handler for room-to-room ventilation, an electrically efficient furnace that has an electronically commutated (EC) variable speed blower motor will minimize your electrical energy consumption and operating cost.

2) In cases where the H/ERV is coupled with a central air handling system, the H/ERV fresh air supply duct to the return air plenum shall be connected at a sufficient distance upstream of the plenum connection to the furnace. This allows proper mixing and ensures appropriate air temperature at the furnace heat exchanger in cold weather. For fuel-fired mid and high efficiency furnaces a minimum temperature of 15.5° C (60° F) is recommended at the heat exchanger (check the furnace manufacturer's specifications).

3) To ensure quiet operation of the H/ERV, each product should be installed using sound attenuation techniques, such as using a flexible connector between the unit and the rigid-pipe supply and return ducts.

4) Installing a user-accessible control with your product will improve comfort and may significantly reduce the product's energy use. Most building codes require a centrally located control with an on/off switch.


2.4. Ducting to The Outside

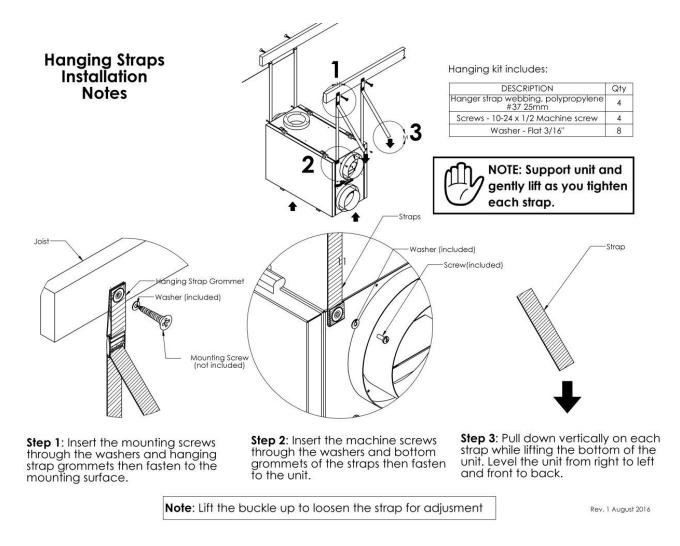
Between the weather hoods and the H/ERV you must use fully insulated ducting with an integrated vapour barrier. Insulated ducting with an integrated vapour barrier must also be used on all runs passing through unheated areas. This will help avoid condensation problems and energy losses.

The minimum RSI value of insulation should equal that of the local building codes.

2.4.1. <u>Weather Hood Installation</u>

- 1. Insulated flex duct slides over the galvanized sleeve of the weather hood.
- 2. Use approved sheathing tape to join the inner duct to the hood's sleeve.
- 3. Tape the **vapour** barrier to back of the hood without compressing the insulation.
- 4. Locate the hoods for easy access for cleaning purposes.
- 5. Be sure to use exterior sealant along the top and side edges of the hoods, tooling the sealant to ensure a good seal.

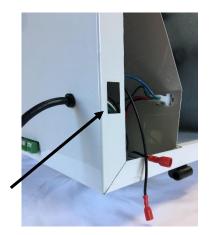
Make the insulated duct that connects the weather hoods to the H/ERV as short as possible to minimize airflow restrictions. Avoid sharp bends and stretch out the inner lining of the flex duct as much as Rev 1.0 September, 2022 6


possible to reduce static pressure and maximize airflow. For runs over 12', increasing flex diameter 1" to next size up will reduce pressure drop in the duct.

2.4.1.1. Locating the Weather Hoods

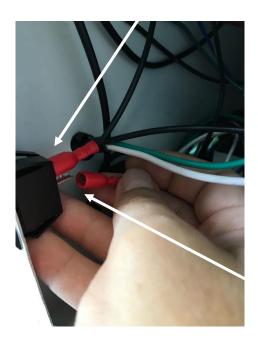
There should be a minimum of 6' (feet) of separation between the fresh air and exhaust hoods. Supply hoods should be a minimum of 18" (inches) above the ground level. Exhaust hoods should be at least 4" (inches) above the ground level. Holes through the wall should be 1" larger than the collar on the hood, to allow for insulation. Fresh air hoods must be 3' away from any other appliance exhaust vent or furnace vent. Consult local code requirements to confirm minimum distances as they may differ.

2.5. Mounting, Noise Control, Orienting the Unit (SE182 Door/Safety Switch)


For maximum efficiency, the H/ERV should be installed in a heated area. The H/ERV is designed to be hung from the ceiling by way of the anti-vibration straps supplied. Avoid hanging the H/ERV directly below a bedroom or other quiet area. Your unit comes with Nu-Air EZ-Level adjustable hanging straps for easy mounting and leveling.

2.5.1. SE182E: Orienting the Unit, Mounting the Safety/Door Switch

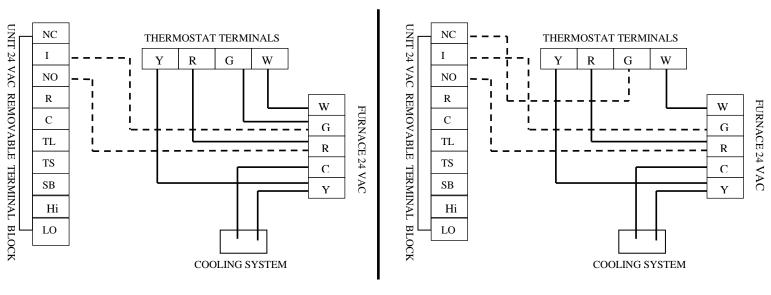
The SE182E has 2 doors and two cut-outs to accept the safety/door switch so that the unit can be oriented in the desired direction very quickly.


Locate the black-sheathed, red spade-connector wires for: A. the power cord, and B. circuit board Line voltage. For convenience, the door switch is pre-connected to the circuit board Line voltage cable when it arrives.

Remove the wire connected to the door switch and gently push the door switch into the desired knockout until its tabs lock the door switch it in place, with the switch paddle pointing down. It is useful to squeeze the door switch locking prongs gently to get the door switch insertion started. Next, attach the power cord and circuit board Line Voltage connectors to the posts on the back of the door switch.

2.5.2. Connecting To Other Equipment - Residential Applications

Interconnection with a forced air furnace duct system is permissible; however, your H/ERV is not intended to be connected to any other equipment or appliances.


2.6. Ductwork

An engineer or other qualified person should design the duct system.

- Duct runs should be straight with minimum bends and elbows.
- Ensure joints are tight-fitting and sealed with duct tape or sealer.
- Use galvanized duct whenever possible. Although flexible duct can be used, its use should be restricted to areas indicated (to outside hoods and in unheated spaces).
- Flexible ducting may be desired in some installations for noise abatement. To ensure effective air flow, use only as much flexible ducting as necessary and keep it taut.
- All ducting must be supported every 3' or less.
- Be sure to seal all pipe joints with foil tape or a duct sealant.
- When possible, form elbow joints so that they are as straight as possible.

2.7. Furnace/Air Handler Interlock

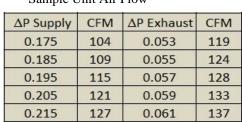
For simplified (return/return) duct systems, it is mandatory that the H/ERV be interlocked with the furnace blower such that the furnace fan runs when the H/ERV is on to distribute supply air throughout the space. For extended exhaust systems, furnace interlock is recommended. Refer to local building codes.

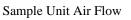
ALTERNATE FURNACE INTERLOCK

If the standard interlocking method has the unwanted effect of bringing on the AC, i.e. thermostats that do not isolate "G" from "Y", use the alternate method shown above.

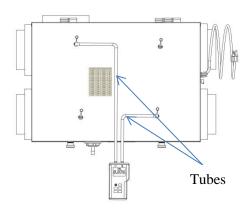
2.8. Balancing Air Flows

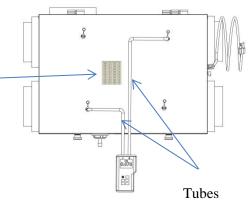
Balanced air flow between the supply and exhaust air streams is essential to the performance of an H/ERV. With the SE Series, changing motor speeds or balancing is quick and simple with two buttons recessed slightly into the unit's cabinet—see next section. NO BALANCING DAMPERS ARE REQUIRED. Once the H/ERV system is installed and the vapour barrier is completed, ensure the following:


- Close all windows, doors and fireplace dampers
- Turn off any exhaust systems such as dryers, range hoods, bath fans and central vacuums.
- With multiple-speed forced air furnaces in Extended or Simplified systems, the furnace should operate at continuous low speed.
- During balancing, activate high speed on the H/ERV by remote control or by temporarily installing a jumper wire between R and Hi on the unit's 10-wire, 24 VAC terminal block.



The H/ERV is equipped with pressure ports. To balance the air flows, you will need a device to measure differential pressure. It is recommended to use either a digital manometer or magnehelic gauge capable of measuring 0 to 0.5 inch of water (0-125 Pa).


NOTE: PRESSURE PORT locations might vary from those illustrated here, depending on the model/orientation of the H/ERV.


- 1. Before placing the manometer, reset it to zero. If using a magnehelic gage, ensure the gage is placed plumb and level.
- 2. According to the air flow to be measured, connect tubing from instrument to EXHAUST air flow or FRESH air flow pressure taps (see illustrations at right).
- 3. If the readings on your instrument drop below zero, reverse the tubing connections.
- 4. Take and record pressure readings from each air stream, consulting the air flow chart mounted on the unit's door to determine air flow.
- 5. Balance air flows so that they equal or within 10% of each other.

NOTE: ΔP /Airflow

different for exhaust

streams, by model.

values might be

and supply air

2.8.1. Adjusting Fan Speed for Balancing and Capacity Requirements

For high-speed adjustment/balancing, initiate high speed (e.g. R-Hi jumper wire, or use remote control), then:

- 1. Press and hold either the FRESH air or EXHAUST air pushbuttons (<u>not both</u>) for 3 Seconds to initiate SPEED ADJUST MODE.
- 2. Press the corresponding button to adjust the fresh air fan or the exhaust fan speed, thereby changing the air flow. Each press reduces motor speed until the default minimum is reached, at which point the motor will return to its peak speed. Allowing a brief pause between presses (about 0.5 seconds), you will press the adjust button about 70 times before reaching minimum speed. During the balancing procedure, you can switch between adjusting the fresh air motor or exhaust air motor.

3. To exit balancing/speed adjust mode, stop pressing buttons for 10 seconds. This will place the unit back in operating mode with the new speeds saved to the circuit board's memory.

Low-Speed Adjustment/Balancing. If low speed adjustment is desired, initiate low speed (e.g. R-Lo or remote control) to put the unit into <u>low speed</u> and follow steps 1-3.


3. CONTROL OPTIONS & CONTROL WIRING

Your machine is equipped for remote controls. Options include humidity sensing, off-on control, intermittent and continuous modes, recirculation as well as high speed control from dehumidistat or timer(s). Your unit can accommodate both ES Series and Windsor Series or other 24 VAC controls. Both types of control may be used in the same installation, with ONE type of central control (12 VDC or 24 VAC). Various means of controlling the system are described below.

3.1. 12 VDC Control

3.1.1. ES Tx and Mx Controls

ES Series Tx and Mx controls are equipped with a touch pad and 3 LED's. The touch pad is used to select mode of operation or turn the appliance off. The LED's indicate mode of operation. ES Tx and Mx controls can be used in virtually any number, and can be wired in *series or in parallel*.

ES Tx and Mx Controls and their Functions

Control	Description	Functions
ES-T1	20-40-60 minute timer	Initiates timed high speed when unit is in low speed or standby.
ES-M1	Off, Standby, Low, High	Full-time in standby, low speed or high speed.
ES-M2	Off, Standby, Low, 20 Low/ 40 Standby	Full-time in standby, low speed, or a cycle of 20 min. low speed followed by 40 minutes of standby.

3.1.2. <u>ES Lumina (p/n NAV-561)</u>

The Lumina offers a complete package of control options in one unit.

Features:

- Backlit LCD Screen
- Generously sized navigation keys
- Intuitive user interface
- Interchangeable face plate to mount chosen face plate colour
- On-board humidity sensor can be disabled where chosen
- Built-in 20-20-60-minute timer
- 1-12 month runtime filter alert (factory default 3 mos.)
- Programming option for non-recirculation units

Functions:

Off, Standby, Continuous low speed, Continuous high speed, Intermittent high speed (with humidity call) Continuous recirculation, 20 Lo/40 standby, 20 Lo/40 recirculation **IMPORTANT!**

- Only <u>ONE</u> NAV-561 per installation.
- Compatible with ES-T1, Win-20 timers, NAV-460 timers.

Note: For units that do not have an internal damper system, like the SE182E, recirculation function cannot be used and should be disabled (see NAV-561 manual on disabling recirculation functions).

3.1.3. Wiring ES Series Controls

Using a 3 mm flat head screwdriver, connect 4-conductor wire to the 12 VDC (4-wire) removable terminal block provided. Wiring ES controls involves simply matching terminals on the control to those of the HRV/ERV terminal block (see right).

DO NOT cross the +12V/12 and ground (GND/G) wires. For ES controls, doing so with power connected to the H/ERV might damage the ES wall control processor.

3.2. Nu-Air 24 VAC Controls and Other 24 VAC Control Options

3.3. NAV-460 20-40-60 Minute Timer & Wiring

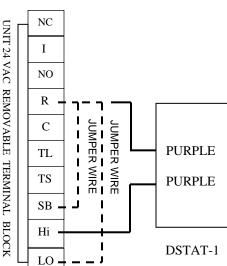
- 24 VAC •
- 3-wire •
- Push button ٠
- LED indicates current/selected timer cycle

Note: NAV-460 timer cannot function as an on/off switch. H/ERV must be (using a central wall control OR a unit-mounted jumper wire) set to one of its operation modes.

3.4. Nu-Air DSTAT-1, Win-1 & Win-20 Timer

Nu-Air offers 24 VAC controls which provide basic functions and easy operation. Other 24 VAC controls might also be used, such as CO2 sensors, programmable timers and ventilation-equipped/smart thermostats.

Control	Description	Functions and Features
DSTAT-1	Dehumidistat	Initiates high speed when ambient humidity exceeds set
		point.
Win-1	Dehumidisat with	Off, full-time in standby, low speed, high speed, initiates
	added features	high speed when ambient humidity exceeds set point.
Win-20	20-minute timer	Initiates high speed when unit in standby or low speed.
Win-20-2	20-minute timer	Initiates high speed when unit in standby or low speed.
		Two-wire connection where only 2 wires are available.
Win-20 Gang	20-minute timer	Initiates high speed when unit in standby or low speed.
		Suitable for multi-switch gang boxes.

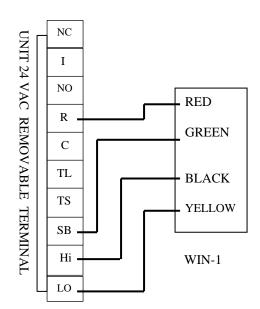

WIRING H/ERV NAV-460 R R С С ΤS ΤS

HRV/ERV	ES
TERMINAL	CONTROL
BLOCK	
G	GND
А	A BUS
В	B BUS
12	+12V

3.4.1. Wiring Nu-Air 24 VAC Controls and Other 24 VAC Options

Using a 3 mm flat head screwdriver, connect 2-4-conductor wire according per requirements to the 24 VAC (10-wire) removable terminal block provided.

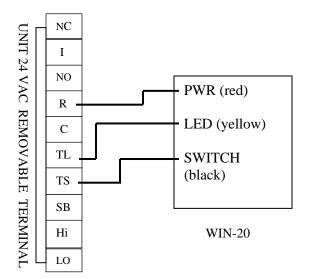
3.4.1.1. DSTAT-1


For intermittent high speed operation, connect Nu-Air PN DSTAT-1 to R and Hi terminals.

Jumper Option 1: For continuous low speed, connect jumper wire to R and LO terminals.

Jumper Option 2: A jumper wire between R and SB to engage the unit in <u>standby mode</u> when intermittent operation is desired will close off integral outside air damper when present.

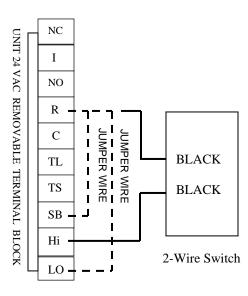
Consult local building code in case a centrally located control with an on/off switch is required. Do not employ Jumper option 1 AND Jumper Option 2 in same installation.


3.4.1.2. Win-1

Choose from the following operating modes:

- 1. Off
- 2. Standby
- 3. Continuous low speed
- 4. Intermittent high speed
- 5. Continuous high speed (CONSTANT)

3.4.1.3. Win-20


Up to 6 Win-20 timers may run off of one system.

WIN-20 can be combined with ES Series controls or 24V controls discussed in this document.

For Win-20-2 wiring, R and TS terminals are used.

If you are using **ONLY** a **WIN-20**(s) to control your unit, you must connect a jumper wire between R and SB on the 24V (10-wire) removable terminal block. In this situation you can add continuous low speed operation by connecting a jumper wire between R and LO. Consult local building code in case a centrally located control with an on/off switch is required.

3.4.1.4. Remote 2-wire switching and other 3rd party controls

For intermittent high speed operation, connect dedicated (RNC) wall switch, CO_2 sensor, smart thermostat, etc. to R and Hi terminals. The "C" terminal on the 10-wire terminal block may be used as needed.

A jumper wire (not provided) can also be used for added flexibility.

Jumper Option 1: For continuous low speed operation, connect jumper wire to R and LO terminals.

Jumper Option 2: A jumper wire between R and SB to engage the unit in <u>standby mode</u> when intermittent operation is desired, especially when using only high speed timers as controls means.

Do not employ Jumper option 1 AND Jumper Option 2 in same installation.

3.5. Status LEDs & Mode of Operation

CONDITION	LED AND STATUS
NO LED	UNIT/TRANSFORMER IS NOT POWERED
UNIT OFF	Red is off, Green is blinking slow, every 1 s. Also indicates processor is programmed and running.
STANDBY	Green is OFF. Red led is blinking slow, every 1 s.
EXHCHANGE LOW SPEED	Green ON. Red blinking slow, every 1 s.
EXCHANGE HIGH SPEED	Green ON. Red blinking fast.
DEFROST	Green ON, Red ON.
RECIRCULATION HIGH SPEED*	Red led ON, Green led blinking fast.

*Where available/for recirculation equipped units.

4. START-UP

- Ensure the controls are connected in accordance with Section 3.
- For electrical hook-up, plug into a 120 volt receptacle.
- Ensure that the machine is piped to an adequate drainage source, i.e. through the drain hose supplied.

5. <u>MAINTENANCE</u>

CAUTION: Disconnect power before servicing.

Filters

Dirty filters can reduce ventilation efficiency, result in unbalanced airflow and damage or shorten the life of the motors. Vacuum every three months. Polyester filters should typically be replaced every 1-3 years. Filters remove easily by opening the front cover of the unit.

Fans

When cleaning the filters, take the opportunity to vacuum any interior surfaces including the fan blades. No other service is required as these fans are designed to operate continuously without lubrication.

Condensate Drain (HRV models)

Twice per year wipe clean the condensate drain pan. Check the condensate drain and tubing to ensure they are free flowing.

Heat/Energy Recovery Core

The core (located behind the cover) should be removed and cleaned at least once a year. To remove the cover of the machine, unlatch the two latches; slide the door to release from its hinges. For an <u>**HRV**</u> core (made of polypropylene sheets, use a mild detergent in cold water. For an <u>**ERV**</u> core (made of a fibre-based plates) the core <u>must not</u> be washed, rather vacuumed, at the interval stated above.

Exterior Hoods

Regularly check the outside vents and clean any obstructions such as grass, leaves or other debris. Do not replace the screen with mesh smaller than 1/4" as this will restrict airflow. During winter operation, ensure snow and frost does not build up and restrict or block openings.

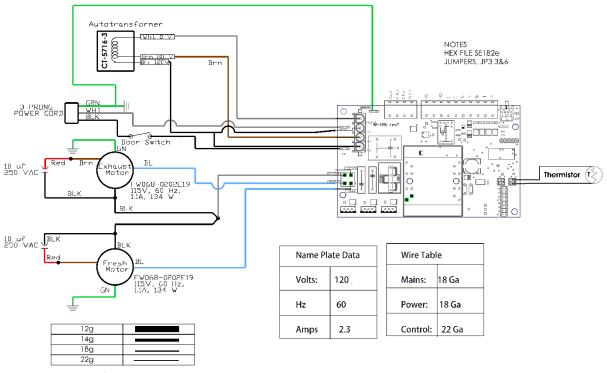
Grills & Duct Work

Clean the grills when they are dusty or greasy with soap and water. Check for punctures in the insulation jacket on the fresh air and exhaust air ducts. Repair any punctures using foil tape.

6. ANNUAL SERVICING:

Your H/ERV should undergo annual general servicing by an accredited contractor. This servicing should include the following:

- a) The six maintenance items above.
- b) A general check for proper operation. Controls and electrical connections should be inspected.
- c) Verification that intake and exhaust air flows are properly balanced.
- d) Re-balancing as necessary.


7. TROUBLE SHOOTING

SYMPTOM	EXPLANATION	ANSWER
The humidity level seems too low.	 H/ERV air flows incorrectly balanced. Dehumidistat control set too low. Lifestyle of the resident(s). 	Balance air flow(s).Increase dehumidistat.Humidifiers may need to be added.
The humidity level seems too high.	 H/ERV air flows incorrectly balanced. H/ERV not properly sized for the application High humidity areas not ventilated properly. Lifestyle of resident(s). Dehumidistat is not working. 	 Balance airflow. Set dehumidistat. Cover pools etc. when not in use. Avoid hanging clothes to dry, storing wood and venting clothes dryer inside.
The house is dry but the basement wet.	• High humidity during summer months	 Install a programmable timer on 12-hour cycle. On at night. Off during the day. Partially close some grills upstairs, open grills in basement.
The Controls or Dehumidistat are not working.	• Incorrect connection of outside low voltage wiring between H/ERV and dehumidistat.	 Check control wiring for short Check wall switch for correct connection. Check wires are connected to proper terminals at the H/HRV
There is Frosting up of the H/ERV and/or duct(s).	 H/ERV air flows incorrectly balanced. H/ERV defrost system is not working. Ducts need to be insulated (or insulated more) 	 Balance H/ERV air flows. Check integral damper function (where present). Install back draft dampers as needed. Check defrost system. Note minimal frost build up is expected on H/ERV cores before unit initiates defrost cycle function. Insulate ducts
The supply air feels cool.	 H/ERV air flows incorrectly balanced. Improper location of supply grills. Extremely cold outside temperatures. Moving air feels cooler than it actually is. 	 Balance H/ERV air flows. Locate grills high on walls or in ceiling. If supply air is installed into return line of furnace, furnace fan must run continuously on low speed.
The outside duct has ice build up or condensation.	• Improperly installed vapour barrier around insulated duct.	 Tape all joints. Ensure that vapour barrier is completely sealed and insulated.
There is water in the bottom of HRV.	 Drain pans are plugged. Incorrect connections of HRV's drain lines. HRV is not level. Drain lines plugged. HRV heat exchange core improperly installed. 	 Look for kinks in the line. Check water drain connections. Ensure that water drains from pan.
There is poor air flow(s)	 H/ERV airflow incorrectly balanced. Filters need to be cleaned. Mesh on outside hoods needs to be cleaned. Grills are closed. Present dampers are closed. Low power supply. Wrong-size ducting. Under-sized H/ERV. H/ERV is not working. 	 Tape all joints. Use proper air flow measuring equipment. Open grills. Remove obstructions in duct(s), hoods(s), and grill(s). Balance air flows. Clean filter. Have a professional look at the system.

IMPORTANT! Only qualified technicians should service controls or internal components.

8. <u>ELECTRICAL SCHEMATICS</u>

SE182E

Grey = White

9. WARRANTIES

Your NU-AIR ES Series Heat Recovery Ventilator Transferable Warranty For Canada and United States

Should your **NU-AIR** SE Series Heat/Energy Recovery Ventilator (H/ERV) cease to function within five (5) years of the date of original purchase (effective March 1, 2015) due to defective material or workmanship of the product, **NU-AIR** Ventilation Systems Inc. will supply a new or rebuilt part FOB Factory to replace the defective part. Delivery, installation, and labour cost are not covered by this warranty.

15 Year HRV Core Warranty

If the (polypropylene) heat recovery core in your **NU-AIR** Heat Recovery Ventilator fails due to a defect in material or workmanship **NU-AIR** Ventilation Systems Inc. will supply a new core FOB Factory to replace the defective part. Delivery and labour costs are your responsibility.

5 Year ERV Core Warranty

If the energy recovery (ERV) core in your **NU-AIR** Energy Recovery Ventilator fails due to a defect in material or workmanship **NU-AIR** Ventilation Systems Inc. will supply a new core FOB Factory to replace the defective part. Delivery and labour costs are your responsibility.

Warranty Limitations

The above warranty does not cover damage to the unit while in your possession (other than damages caused by defective parts or material) due to the following: 1) improper installation or unreasonable use of unit: 2) failure to provide reasonable and necessary maintenance. If the unit is put to commercial use or application other than residential use, warranty is for a period of one (1) year.

P.O. Box 2758 Windsor, Nova Scotia Canada B0N 2T0 Phone: 902 798 2261 Fax: 902 798 2557 Email: nuair@nu-airventilation.com Website: www.nu-airventilation.com

10. NOTES/SERVICE RECORD